
A

Placement & Routing for
Tile-based Field-coupled Nanocomputing Circuits is NP-complete

MARCEL WALTER, University of Bremen
ROBERT WILLE, Johannes Kepler University Linz
DANIEL GROSSE, University of Bremen
FRANK SILL TORRES, DFKI GmbH
ROLF DRECHSLER, University of Bremen

Field-coupled Nanocomputing (FCN) technologies provide an alternative to conventional CMOS-based com-
putation technologies and are characterized by intriguingly low energy dissipation. Accordingly, their design
received significant attention in the recent past. FCN circuit implementations like Quantum-dot Cellular
Automata (QCA) or Nanomagnet Logic (NML) have already been built in labs and basic operations such
as inverters, Majority, AND, OR, etc. are already available. The design problem basically boils down to
the question how to place basic operations and route their connections so that the desired function results
while, at the same time, further constraints (related to timing, clocking, path lengths, etc.) are satisfied.
While several solutions for this problem have been proposed, interestingly no clear understanding about the
complexity of the underlying task exists thus far. In this research note, we consider this problem and even-
tually prove that placement and routing for tile-based FCN circuits is NP-complete. By this, we provide a
theoretical foundation for the further development of corresponding design methods.

1. INTRODUCTION
Field-coupled Nanocomputing (FCN) [Anderson and Bhanja 2014] is a relatively young class
of emerging computation technologies that might enable the design and realization of sys-
tems with highest processing performance and an intriguing low energy dissipation [Timler
and Lent 2002; Srivastava et al. 2009; Porod et al. 2014]. FCN technologies allow for a
completely different way of representing and processing Boolean values and functions based
on local fields between nanoscale devices and repelling forces to transmit information with-
out electric current flow. Consequently, numerous contributions on their physical realization
have been made in the past, e. g. molecular Quantum-dot Cellular Automata (mQCA) [Eich-
wald et al. 2012], atomic Quantum-dot Cellular Automata (aQCA) [Wolkow et al. 2014; Huff
et al. 2017], or Nanomagnetic Logic (NML) [Eichwald et al. 2012; Varga et al. 2013; Porod
et al. 2014].

Regardless of how information is represented in the different FCN implementations, they
all share certain attributes. Basic elements are so-called cells which store Boolean values
and interact with adjacent cells via repelling forces [Lent and Tougaw 1997; Giri et al. 2018].
These cells can be based on atoms [Wolkow et al. 2014], molecules [Arima et al. 2012] or
nanomagnets [Varga et al. 2013]. Furthermore, data transfer is controlled by external electric
(QCA-like technologies) or magnetic clocks (NML technologies). For example, in the case
of QCA-like technologies, binary information is represented by means of four quantum dots
situated at the corners of a cell as well as two free and mobile electrons which are able
to tunnel between adjacent dots. Since the electrons experience mutual repulsion due to
Coulomb interaction, they tend to locate themselves as far as possible from each other.
This yields to two stable states as shown in Fig. 1a (quantum dots occupied by an electron
are drawn black, otherwise, they are drawn white) which are used to encode the Boolean
values 0 and 1, respectively.

In order to conduct computations, several of such cells are placed next to each other as
shown e. g. in Figs. 1b to 1d. Although the electrons of one cell may not tunnel to another
cell due to a potential barrier, their polarizations can affect each other. This way, the charge
of electrons leads to a mutual repulsion which causes them to avoid a quantum dot if the
neighboring quantum dots of adjacent cells are occupied by other electrons. This can be

used to implement e. g. a wire as shown in Fig. 1b, an inverter as depicted in Fig. 1c,
or a Majority gate as shown in Fig. 1d. The wire element simply propagates information
from one end to the other by exploiting the Coulomb interaction as mentioned above. The
inverter however is a bit more complex. The signal is assumed to traverse the gate from
left to right. The actual inversion happens as QCA cells interact with one another over the
corners. As depicted in Fig. 1c, the state of the output f is inverted compared to input
a. The Majority gate works by three cells influencing the middle cell which adopts to the
majority of the cells’ states and propagates its value to the rightmost cell that is considered
the output. The AND and OR gates can be derived from a Majority gate easily by fixing
one input to 0 or 1, respectively.

Given this as basis, an important task for all FCN related technologies is the design of
the desired circuit, i. e. how to arrange cells as reviewed above so that eventually an FCN
circuit results which implements an initially given function. Recent developments treated
this problem in a tile-based fashion [Huang et al. 2005; Campos et al. 2016; Giri et al. 2018].
That is, a predefined floor plan is given that is divided into tiles to which wires and basic
operations such as those shown in Figs. 1b to 1d1 can be assigned. This eventually boils
down the design problem to a placement and routing task: how to place basic operations
and route their connections (i. e. wires) so that the desired function results while, at the
same time, further constraints (related to timing, clocking, path lengths, etc. which are
reviewed in more detail in the next section) are satisfied.

The literature provides several solutions to this problem which enabled researchers to im-
plement e. g. arithmetic functions [Perri and Corsonello 2012; Giri et al. 2016], FPGAs [Kian-
pour and Sabbaghi-Nadooshan 2014], or small processors [Fazzion et al. 2014]. Besides that,
also several methods for the automatic placement and routing of FCN circuits have been
introduced – including heuristic methods such as [Nath et al. 2017; Trindade et al. 2016] as
well as exact methods such as [Walter et al. 2018]. However, all these endeavors have been
conducted without a clear understanding about the complexity of the underlying task. As a
consequence, we currently have heuristics which usually generate non-optimal results on the
one hand and exact solutions which significantly suffer from huge run-times and severely
limited scalability on the other, but do not know whether this is caused by insufficient
methodology or complexity reasons.

In this research note, we shed light on this. To this end, we provide the first formally
sound definition of the tile-based FCN circuit placement and routing problem independent
of specific physical implementations. Therefore, we utilize graph theoretical notation which
allows us to formulate the problem in a way as close to applicability as possible. In other
words, the notation directly points at related problems in the domain of graph theory which
can be used as a starting point in the development of approximation algorithms. Then, we
prove that the considered problem is NP-complete and, hence, indeed a computationally
complex task. By this, we provide a theoretical foundation for the further development of
corresponding design methods.

The remainder of this work is structured as follows. While this section already provided
the basics of FCN technology by means of QCA-like circuits, Section 2 illustrates the tile-
based placement and routing problem – eventually resulting in a formal problem definition.
Afterwards, Section 3 provides the proof for NP-completeness. Finally, Section 4 summa-
rizes the findings and discusses their possible implications.

2. PLACEMENT & ROUTING OF TILE-BASED FCN CIRCUITS
As reviewed above, the overall placement and routing task is formulated as determining
an assignment of operations to floor plan tiles and connecting them by wires such that the

1Usually specified by a gate library [Giri et al. 2016; Torres et al. 2018b; Reis et al. 2016].

2

(a) States in a cell (b) QCA wire

(c) QCA Inverter (d) QCA Majority

Fig. 1: QCA states and operations

desired functionality is conducted. However, to ensure a correct physical realization, several
constraints related to clocking, path lengths, etc. have to be considered during this process.

More precisely, external clocks are employed which regulate the intercellular tunneling
barrier within QCA cells or the ability of NML cells to change their magnetization state.
These clocks enable proper propagation of information among the cells and avoid metastable
states [Hennessy and Lent 2001; Porod et al. 2014]. In case of tile-based floor plans, each tile
is associated with an external clock which controls all cells within the specific tile [Huang
et al. 2005; Giri et al. 2018]. Alternatively, the associated clock of each cell could be defined
individually, as e. g. in [Fazzion et al. 2014; Roohi et al. 2015]. However, this raises serious
concerns regarding the feasibility of the clock signal distribution and design complexity [Lent
and Tougaw 1997; Huang et al. 2005; Vankamamidi et al. 2008] and, consequently, shall not
be considered here.

Instead, most FCN implementation models assume a 4-phase clocking with external clocks
numbered from 1 to 4 and each clock shifted by 1 phase [Anderson and Bhanja 2014]. Here,
information flows from cells controlled by clock 1 to cells controlled by clock 2 etc. and
finally from clock 4 to clock 1. Nonetheless, several NML implementations employ a 3-
phase clocking [Porod et al. 2014]. To keep the definition of the considered problem as
generic as possible, we will assume that a clocking consists of C clock numbers.

An additional constraint that has to be considered is the throughput effect of equal
path lengths. FCN circuits can be implemented like pipelines: new data are applied to the
primary inputs in every clock cycle – eventually leading to corresponding results at the
primary outputs. However, this is only the case for circuits that employ wire connections in
a way that lead to exactly the same delay2 of all signals to all multi-input gates on the floor
plan. If this is not ensured, the FCN circuit’s overall throughput drops and the same input
signals must be applied over a period of multiple clock cycles as a consequence [Torres et al.
2018a].

The following example illustrates some of these constraints.

Example 2.1. Consider the 2:1 multiplexer (MUX) function to be realized (in QCA) and
whose (conventional) netlist is depicted in Fig. 2a. For all corresponding basic operations,

2Here, delay means the number of complete clock cycles a signal requires to traverse the circuit. A clock
cycle lasts for the number of phases of the applied clocking and the minimum delay is 1.

3

(a) 2:1 MUX netlist (b) (p, r, c) mapping
on G3,2

(c) Gate level impl. (d) QCA implementation

Fig. 2: Placement, routing, clocking, and final implementation of QCA 2:1 MUX

namely inverter, AND, OR, corresponding QCA realizations are available (see e. g. [Reis
et al. 2016; Torres et al. 2018b]).

Fig. 2c and Fig. 2d depict a valid gate level implementation and the corresponding QCA
circuit realizing that very function and also satisfying the constraints sketched above. As
an example, consider the OR gate at the top right which is located in a tile controlled by
clock 4. In order to enable a correct information flow, both inputs are driven by a wire and
an AND gate respectively located in tiles controlled by clock 3.

There are pros and cons for satisfying a constraint or loosen it (as they e. g. affect area
vs. throughput). Since we aim for maximum generality, we will prove both cases to be
NP-complete in the remainder.

Overall, this yields a formal definition of the placement and routing problem for tile-based
FCN circuits (hereafter denoted Fcnpr) as follows:

Definition 2.2. The Fcnpr is a decision problem. It gets a floor plan F = (T,A) as well
as a netlist N = (O,W) and a clock number C ∈ N as inputs.3 F and N are both directed
graphs with vertices and edges (which have been renamed as (T,A) and (O,W) respectively
for ease of recognition) where F is composed of tiles T connected by an adjacency relation A
and serves as a host graph, and N consists of operations O (given by a gate library) which
fit on a single tile each and that are connected by wires W , and serves as the associated
guest graph to F . Fcnpr evaluates to true for F , N , and C iff there exists a 3-tuple of
injective mappings (p, r, c), where p : O → T is the operation placement, r : W → PF is the
wire routing,4 and c : T → {0, . . . , C − 1} is the clock number assignment, such that the
following constraints hold:

3From a technical perspective, it makes sense to enforce C ≥ 3 because no directed information flow is
possible otherwise.
4Let PF denote the set of all cycle-free paths in F and let paths be ordered (multi-)sets of vertices (i. e.
tiles in this case).

4

(1) Routing constraint: Each wire between two operations o1, o2 in the netlist is routed
on the floor plan in a way that it starts at the tile t1 where o1 is placed, ends at the
tile tn where o2 is placed, and does not cross any other operation (crossing other wires is
allowed though). More formally: ∀(o1, o2) ∈ W : ((r((o1, o2)) = T = {t1, . . . , tn}) =⇒
(t1 = p(o1) ∧ tn = p(o2))) ∧ ∀o ∈ O : p(o) /∈ T \ {t1, tn}.

(2) Clock Number Assignment Constraint: For each wire between two operations in the
netlist that is routed on the floor plan, the clock numbers need to be assigned to the
affected tiles in a way that they are consecutively numbered, where the highest possible
clock number is followed by the lowest one (i. e. 0). More formally: ∀(o1, o2) ∈ W :
(r((o1, o2)) = {t1, . . . , tn}) =⇒ ∀i ∈ {2, . . . , n} : ((c(ti)− c(ti−1)) mod C = 1).

(3) Throughput Constraint: All paths in the netlist starting at some primary inputs and
sharing a common last vertex, must be equally long when routed on the floor plan while
taking their clock numbers into account to compensate delay differences. More formally:
∀p1, p2 ∈ PN , where p1 = {o1, . . . , o′}, and p2 = {o2, . . . , o′} : |r(o1, o′)| + c(p(o1)) =
|r(o2, o′)| + c(p(o2)), where ∀o ∈ O : (o, o1), (o, o2) /∈ W , p1 and p2 are disjoint except
for o′, and let PN be analogously defined to PF , and let |P | denote the length of a
path P .

Example 2.3. Consider the netlist of the 2:1 MUX given in Fig. 2a again. In Example 2.1,
we have shown a possible QCA circuit realization for that netlist onto a 3× 2 grid graph.5
Possible mappings (p, r, c) are shown in Fig. 2b. The operation placement is depicted by
Roman numbers associated with the operation numbering in Fig. 2a, while connections
between operations (i. e. the wire routing) are drawn as bold lines. Note the difference
between a wire in the netlist, which is an abstract connection between two operations o1
and o2, and the physical wire routing, which connects two placed operations p(o1) and p(o2).
In Fig. 2b and 2d, these physical connections are depicted. As it can be seen, they can be
of effective length 0 when a direct gate-to-gate connection is established without a wire
element spanning in between. Additionally, a clocking that ensures correct information flow
is given by Arabic clock numbers together with a grayscale background tile shade.6 Overall,
these mappings correspond to the QCA 2:1 MUX circuit given in Fig. 2d.

3. PROOF OF NP-COMPLETENESS
In this section, we prove that the problem defined above is NP-complete, i. e. we prove the
following Lemmas 3.1 and 3.3 which lead to Proposition 3.5:

Lemma 3.1. Fcnpr is in NP.

Proof. Assume a non-deterministic Turing machine that guesses the 3-tuple (p, r, c)
for a given netlist and floor plan and checks in polynomial time if it complies with all
constraints.

We will show the NP-hardness by a polynomial time reduction from the well known
Hamiltonian path problem (Hpp) to Fcnpr.

Definition 3.2. The Hpp is a decision problem that was shown to beNP-complete [Garey
and Johnson 1979]. It gets a directed graph G = (V,E) as input. Its output is true iff there
exists a path in G that contains each vertex exactly once.

Lemma 3.3. Fcnpr is NP-hard.

5Let an x × y grid graph formally be defined as Gx,y := (V,E), where V = {1, . . . , x} × {1, . . . , y} and
E = {((i, j), (i′, j′)), ((i′, j′), (i, j)) | |i− i′|+ |j − j′| = 1}.
6Note that we started clock numbering at 0 for ease of denotation using the modulo operation in our formal
definition. In Fig. 2, however, we employed the commonly used numbering starting at 1. They can trivially
be translated into one another by adding/subtracting 1 to/from every clock number.

5

(a) Single input/single output
operation chain

(b) Finding a Hamiltonian
path via embedding

Fig. 3: Hpp ≤P Fcnpr

Proof. We prove this by providing a polynomial time reduction Hpp ≤P Fcnpr. That
is, to a given instance of Hpp, we can construct an instance of Fcnpr in polynomial time so
that they are equisatisfiable. It follows directly that iff an oracle provided a solution to that
Fcnpr instance, we can deduce a solution for the Hpp instance easily. Thus, Hpp cannot
be harder than Fcnpr.

Given a directed graph G = (V,E) with n vertices. It is to be decided if Hpp holds for G
(i. e. if G is an element of the language LHpp) via reduction to Fcnpr. Construct a netlist
N = (O,W) in a way that O = V and W = {(o1, o2), (o2, o3), . . . , (on−1, on)}, oi ∈ O, i. e.
a chain of all n operations.7 This can be done in linear time. In the following, G serves
as a floor plan for N . Since the number of vertices in both graphs is identical, a bijective
operation placement p is possible (which also is injective by definition). If the wire routing r
can also be employed while meeting the routing constraint (1), a Hamiltonian path has been
found. This means, if the vertices are placed in a way that they are adjacent on the floor
plan if they are adjacent in the netlist, the routing constraint can be fulfilled. Nonetheless,
the clock number assignment constraint (2) must be met as well to truly satisfy Fcnpr.
If the embedding was possible, c can be chosen so that the tile onto which operation oi is
placed got clock number i mod C assigned because propagating information through a chain
is easily possible this way. Plus, assigning the clocking has only a linear overhead then. So
the reduction stays polynomial. Finally, the throughput constraint (3) is trivially satisfied
because there are no two paths which are disjoint except for their last vertex in the netlist.

As a consequence, Hpp holds for G iff Fcnpr holds for G and N , i. e. iff it is possible to
embed the n-operation chain in G. Thus, Fcnpr is NP-hard.

Example 3.4. To provide a visual intuition of how the operation chain embedding works,
which is the core of the reduction, consider exemplarily the task of finding a Hamiltonian
path in a 3 × 3 grid. The grid consists of 9 tiles, i. e. a 9-operation chain is created, like
the one shown in Fig. 3a. If it is possible to embed this chain in the grid (i. e. determining
mappings p and r), a Hamiltonian path has obviously been found. This is depicted in Fig. 3b.
As it can be seen, determining the clocking c becomes trivial then by consecutively clock-
numbering the tiles along with the chain, thus satisfying constraint (2). Furthermore, the
throughput constraint (3) is satisfied because there are no two disjoint paths in the chain
netlist.8

7We assume there is a single input/single output operation given by a gate library. Even the identity function
(i. e. a wire) can be employed.
8Note that we have given a grid graph as an example for ease of visualization only. Any floor plan can be
employed here in fact.

6

One might wonder if the permission to employ wire crossings does have any effect on the
equisatisfiability of Hpp and Fcnpr during the reduction because this would imply that
vertices could be “visited” twice which is obviously not allowed in the Hpp. In fact, this
is not a problem because we employ n-operation chains where the operation placement p
is bijective. So there are no vertices in the floor plan which are occupied by wire nodes.
Additionally, wires crossing operations is forbidden by definition. Therefore, no crossings
are possible during the reduction and the equisatisfiability holds.

Based on the discussions from above, we now can conclude the following:

Proposition 3.5. Fcnpr is NP-complete.

Proof. Follows directly from Lemmas 3.1 and 3.3.

Proposition 3.6. Fcnpr remains NP-complete when relieving the throughput con-
straint (3).

Proof. Straight-forward as constraint (3) was trivially satisfied in the proof of
Lemma 3.3.

Proposition 3.7. Fcnpr remains NP-complete when prohibiting wire-crossings.

Proof. Straight-forward as the chain embedding in the proof of Lemma 3.3 does not
utilize wire crossings.

Accordingly, we have shown NP-completeness for the most general cases of the Fcnpr.
In the real world, however, the input floor plan is usually not an arbitrary graph. Instead,
grid structures are often employed as shown by our examples. But this does not affect the
complexity class as shown in our next proposition.

Proposition 3.8. Fcnpr remains NP-complete even if the input floor plan is restricted
to grid graphs.

Proof. It was shown in [Itai et al. 1982] that Hpp remains NP-complete when the
input is restricted to grid graphs. Thus, an analogous reduction as given in the proof of
Lemma 3.3 can be conducted utilizing the findings from [Itai et al. 1982].

Furthermore, the clock number assignment c is often predefined to the floor plan prior
to the layout step when using a scheme as e. g. in [Campos et al. 2016]. The clocking can
therefore be considered part of the input.

Proposition 3.9. Fcnpr remains NP-complete when the clock number assignment c
is part of the input.

Proof. Use the floor plan F = (T,A) and the clocking map c to construct a clocking
graph Gc = (Vc, Ec), with Vc := T and Ec := {(t1, t2) | (t1, t2) ∈ A ∧ (c(t1) + 1) mod C =
c(t2)}. That is, the vertex set is equal to the floor plan’s vertices and the edge set corre-
sponds to all connections which (1) exist in the floor plan as well and additionally fulfill
the requirement that they (2) allow information flow based on the clock number assignment
constraint, i. e. have a consecutive numbering modulo the highest clock number C.

Then utilize Gc as the new input floor plan to Fcnpr. This way, only connections allowed
by information flow regarding F and c remain possible and the complexity of the problem
does not change.

One can prove that all possible combinations of the above restrictions still leave the
problem’s complexity unchanged.

7

Thus far, we have looked into the existence of valid solutions. Designers are often inter-
ested in optimal solutions for problem instances, too. Therefore, we introduce the optimiza-
tion variant of Fcnpr which we call Fcnopr.

Definition 3.10. Fcnopr is an optimization problem. Its inputs and constraints are
those of Fcnpr as given in Definition 2.2. Additionally, an optimization direction type ∈
{min,max} and a measure m as a function that maps Fcnpr solutions S = (p, r, c) to a
quality value q ∈ N is provided, whose computation must be in FP, i. e. must be computable
in polynomial time.

A suitable measure could be the number of occupied tiles, which one might want to
minimize: m(S) :=

∑
w∈W |r(w)|. In the definition, only the number of wires is respected,

because this is the only variable factor (see e. g. [Torres et al. 2018c]), while the number of
operations stays the same as by definition of Fcnpr.

Alternatively, when working on a geometric floor plan like a grid, the area of the bound-
ing box of the whole design can be used as a minimization measure, too. For grids, the
definition would look like this: m(S) := (maxx(T

∗)−minx(T
∗)) · (maxy(T

∗)−miny(T
∗)),

where T ∗ is the set that contains all tiles occupied by either an operation or a wire, i. e.
T ∗ :=

⋃
o∈O{p(o)} ∪

⋃
w∈W r(w). The functions minx/y and maxx/y return the minimum

or maximum x- or y-position of the tiles in the set respectively.

Lemma 3.11. Fcnopr is in NPO.

Proof. To prove this, we have to show that (1) deciding whether a tuple (p, r, c) is a
valid solution to Fcnopr is in P, (2) m ∈ FP, and (3) the solution size is bounded by a
polynomial with respect to the input.

In proof of Lemma 3.1, we have already shown that deciding whether a tuple (p, r, c) is
a valid solution to Fcnpr is in P. Since the problem definition of Fcnopr is identical, the
same finding holds.

Additionally, the measure m is computable in polynomial time by definition, therefore
m ∈ FP holds.

Finally, valid solutions are never larger in size than the input floor plan F , i. e. bounded
by the polynomial |F |.

Proposition 3.12. Fcnopr is NP-hard.

Proof. Follows directly from Lemmas 3.3 and 3.11, i. e. the decision version of Fcnopr
is NP-hard and Fcnopr itself is in NPO.

4. CONCLUSION AND FUTURE WORK
In this research note, we have shown that placement and routing for the class of tile-based
Field-coupled Nanocomputing circuits is NP-complete while its corresponding optimization
problem is in NPO. By this, we provide a theoretical foundation for the further develop-
ment of corresponding design methods for a new class of technologies. In fact, this result
basically confirms that previously proposed heuristics and exact methods, which only gen-
erate non-optimal results or have a severely limited scalability, respectively, do not suffer
from insufficient methodology but complexity reasons. For the design of a technology which
comes with intriguing low energy properties and, hence, promising practical applications,
this constitutes one of the first substantial theoretical results.

Moreover, this result will have a significant impact on future work. Besides the effect
of the further development of corresponding design methods (now that the theoretical
complexity of the problem has been shown, according reasoning methods such as theo-
rem provers (e. g. [Nipkow et al. 2002]) or satisfiability solvers (e. g. [De Moura and Bjørner
2008]) seem a much more suitable choice to tackle this design problem), this result may also

8

trigger a further, more in-depth consideration of the computational theory behind FCN
circuit design.

With the chosen graph-based formulation, several related problems like the (directed)
sub-graph homeomorphism problem (denoted Shp) as introduced in [LaPaugh and Rivest
1980] and [Fortune et al. 1980] come into consideration for developing placers and routers
for FCN technologies. Exploiting such similarities allow to transfer further results from the
Shp domain (which has heavily been considered in the past, see e. g. [Lingas and Wahlen
2009; Matoušek and Thomas 1992; Chung 1987]) to the FCN domain. While Shp resembles
Fcnpr remarkably, recently, approximation algorithms for the loosely related orthogonal
graph drawing (Ogd) like [Biedl 1996] were found to approximate Fcnopr under certain
restrictions based on the findings presented in this paper and have been successfully ex-
ploited in [Walter et al. 2019] demonstrating the significance of this work.

REFERENCES
N. G. Anderson and S. Bhanja. 2014. Field-coupled Nanocomputing: Paradigms, Progress, and Perspectives

(1st ed.). Springer, New York.
Valentina Arima, Matteo Iurlo, and others. 2012. Toward Quantum-dot Cellular Automata Units: Thiolated-

carbazole linked bisferrocenes. Nanoscale 4 (2012), 813–823. Issue 3.
Therese C. Biedl. 1996. Improved Orthogonal Drawings of 3-graphs.. In CCCG. 295–299.
C. A. T. Campos, A. L. P. Marciano, O. P. V. Neto, and F. S. Torres. 2016. USE: A Universal, Scalable,

and Efficient Clocking Scheme for QCA. TCAD 35, 3 (2016), 513–517.
Moon Jung Chung. 1987. O(n2.5) time algorithms for the subgraph homeomorphism problem on trees. J.

Algorithms 8, 1 (1987), 106–112.
L. De Moura and N. Bjørner. 2008. Z3: An Efficient SMT Solver. In TACAS/ETAPS. 4.
I. Eichwald, A. Bartel, J. Kiermaier, S. Breitkreutz, G. Csaba, D. Schmitt-Landsiedel, and M. Becherer.

2012. Nanomagnetic Logic: Error-Free, Directed Signal Transmission by an Inverter Chain. IEEE Trans.
Magn. 48, 11 (2012), 4332–4335.

E. Fazzion, O. L. Fonseca, J. A. M. Nacif, O. P. V. Neto, A. O. Fernandes, and D. S. Silva. 2014. A
quantum-dot cellular automata processor design. In SBCCI.

Steven Fortune, John Hopcroft, and James Wyllie. 1980. The directed subgraph homeomorphism problem.
Theor. Comput. Sci. 10, 2 (1980), 111–121.

Michael R. Garey and David S. Johnson. 1979. Computers and Intractability – A Guide to the Theory of
NP-completeness. W. H. Freeman.

D. Giri, G. Causapruno, and F. Riente. 2018. Parallel and Serial Computation in Nanomagnet Logic: An
Overview. TVLSI (2018), 1–11.

D. Giri, M. Vacca, G. Causapruno, M. Zamboni, and M. Graziano. 2016. Modeling, Design, and Analysis
of MagnetoElastic NML Circuits. IEEE Transactions on Nanotechnology 15, 6 (Nov 2016), 977–985.

K. Hennessy and C. S. Lent. 2001. Clocking of molecular quantum-dot cellular automata. J. Vac. Sci.
Technol. B 19, 5 (2001), 1752–1755.

J. Huang, M. Momenzadeh, L. Schiano, M. Ottavi, and F. Lombardi. 2005. Tile-based QCA Design Using
Majority-like Logic Primitives. JETC 1, 3 (2005), 163–185.

Taleana R. Huff, Hatem Labidi, and others. 2017. Atomic White-Out: Enabling Atomic Circuitry through
Mechanically Induced Bonding of Single Hydrogen Atoms to a Silicon Surface. ACS Nano 11, 9 (2017),
8636–8642.

Alon Itai, Christos H. Papadimitriou, and Jayme Luiz Szwarcfiter. 1982. Hamilton paths in grid graphs.
SIAM J. Comput. 11, 4 (1982), 676–686.

M. Kianpour and R. Sabbaghi-Nadooshan. 2014. A novel quantum-dot cellular automata CLB of FPGA.
J. Comput. Electron. 13, 3 (2014), 709–725.

Andrea S. LaPaugh and Ronald L. Rivest. 1980. The subgraph homeomorphism problem. J. Comput. Syst.
Sci. (1980), 133 – 149.

C. S. Lent and P. D. Tougaw. 1997. A device architecture for computing with quantum dots. Proc. IEEE
85, 4 (1997), 541–557.

Andrzej Lingas and Martin Wahlen. 2009. An exact algorithm for subgraph homeomorphism. JDA 7, 4
(2009), 464–468.

9

Jiří Matoušek and Robin Thomas. 1992. On the complexity of finding iso-and other morphisms for partial
k-trees. Discrete Math. 108, 1–3 (1992), 343–364.

R. K. Nath, B. Sen, and B. K. Sikdar. 2017. Optimal synthesis of QCA logic circuit eliminating wire-
crossings. IET-CDS 11, 3 (2017), 201–208.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL: a proof assistant for higher-
order logic. Vol. 2283. Springer Science & Business Media.

S. Perri and P. Corsonello. 2012. New Methodology for the Design of Efficient Binary Addition Circuits in
QCA. TNANO 11, 6 (2012), 1192–1200.

Wolfgang Porod, Gary H. Bernstein, György Csaba, Sharon X. Hu, Joseph Nahas, Michael T. Niemier, and
Alexei Orlov. 2014. Nanomagnet Logic (NML). Springer Berlin Heidelberg, Berlin, Heidelberg, 21–32.

D. A. Reis, C. A. T. Campos, T. R. Soares, O. P. V. Neto, and F. S. Torres. 2016. A Methodology for
Standard Cell Design for QCA. In ISCAS.

Arman Roohi, Ronald F. DeMara, and Navid Khoshavi. 2015. Design and evaluation of an ultra-area-efficient
fault-tolerant QCA full adder. Microelectron. J. 46, 6 (2015), 531–542.

S. Srivastava, S. Sarkar, and S. Bhanja. 2009. Estimation of Upper Bound of Power Dissipation in QCA
Circuits. IEEE TNANO 8, 1 (Jan 2009), 116–127.

J. Timler and C. S. Lent. 2002. Power gain and dissipation in quantum-dot cellular automata. J. Appl.
Phys. 91, 2 (2002), 823–831.

Frank Sill Torres, Marcel Walter, Robert Wille, Daniel Große, and Rolf Drechsler. 2018a. Synchronization
of Clocked Field-Coupled Circuits. In IEEE-NANO. 1–4.

Frank Sill Torres, Robert Wille, Philipp Niemann, and Rolf Drechsler. 2018b. An Energy-aware Model
for the Logic Synthesis of Quantum-Dot Cellular Automata. IEEE TCAD 37, 12 (December 2018),
3031–3041.

Frank Sill Torres, Robert Wille, Marcel Walter, Philipp Niemann, Daniel Große, and Rolf Drechsler. 2018c.
Evaluating the Impact of Interconnections in Quantum-Dot Cellular Automata. In DSD. 649–656.

A. Trindade, R. S. Ferreira, J. A. M. Nacif, D. Sales, and O. P. V. Neto. 2016. A Placement and routing
algorithm for Quantum-dot Cellular Automata. In SBCCI.

V. Vankamamidi, M. Ottavi, and F. Lombardi. 2008. Two-Dimensional Schemes for Clocking/Timing of
QCA Circuits. TCAD 27, 1 (2008), 34–44.

E. Varga, M. T. Niemier, G. Csaba, G. H. Bernstein, and W. Porod. 2013. Experimental Realization of a
Nanomagnet Full Adder Using Slanted-Edge Magnets. IEEE Trans. Magn. 49, 7 (July 2013), 4452–4455.

Marcel Walter, Robert Wille, Daniel Grosse, Frank Sill Torres, and Rolf Drechsler. 2018. An Exact Method
for Design Exploration of Quantum-dot Cellular Automata. In DATE. 503–508.

Marcel Walter, Robert Wille, Frank Sill Torres, Daniel Große, and Rolf Drechsler. 2019. Scalable Design
for Field-coupled Nanocomputing Circuits. In ASP-DAC.

Robert A. Wolkow, Lucian Livadaru, and others. 2014. Silicon Atomic Quantum Dots Enable Beyond-
CMOS Electronics. Springer-Verlag, 33–58.

10

	Introduction
	Placement & Routing of Tile-based FCN Circuits
	Proof of NP-completeness
	Conclusion and Future Work

